If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+480x-4800=0
a = 1; b = 480; c = -4800;
Δ = b2-4ac
Δ = 4802-4·1·(-4800)
Δ = 249600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{249600}=\sqrt{6400*39}=\sqrt{6400}*\sqrt{39}=80\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(480)-80\sqrt{39}}{2*1}=\frac{-480-80\sqrt{39}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(480)+80\sqrt{39}}{2*1}=\frac{-480+80\sqrt{39}}{2} $
| 1-9f=-10f-9 | | .5r+78.2=287 | | c2=150 | | 2.x+5=2x-15 | | 4k+1+114+33=180 | | ²/3(x+13)=22 | | 4x+34=10x+32 | | (x+3)^2=53 | | 2/3.y=24 | | 6c+2+57+55=180 | | 32x+2=2(3x+27) | | 14=m(4)(7) | | 3v-5+5(2v+1)=-2(v+5) | | –5+6v=5v | | x/6-1.2=-20.4 | | 5y/4-y/3=5/6 | | -t-6=-4t | | 3/4.x=24 | | 10-4b=-2b-3(2+2b) | | 2.5=x+0.07x | | -8x+16=4(x+7) | | 24=w2-9 | | X/5-x+2/10=1 | | 18=-y/3 | | –t−6=–4t | | 2x–10|=40x≥5 | | 5(4x+6)=20x-8 | | 3b+2+56+65=180 | | 5+3x+9=-(x-4) | | 3(x+2)=-5–2(x–3) | | –2k=–3k+6 | | 1/2x-7/10=1/10 |